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Abstract: We study oscillons in D+1 space-time dimensions using a spherically symmet-

ric ansatz. From Gaussian initial conditions, these evolve by emitting radiation, approach-

ing “quasi-breathers”, near-periodic solutions to the equations of motion. Using a truncated

mode expansion, we numerically determine these quasi-breather solutions in 2 < D < 6

and the energy dependence on the oscillation frequency. In particular, this energy has a

minimum, which in turn depends on the number of spatial dimensions. We study the time

evolution and lifetimes of the resulting quasi-breathers, and show how generic oscillons

decay into these before disappearing altogether. We comment on the apparent absence of

oscillons for D > 5 and the possibility of stable solutions for D ≤ 2.

Keywords: Nonperturbative Effects, Solitons Monopoles and Instantons.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep012007030/jhep012007030.pdf

mailto:paul.saffin@nottingham.ac.uk
mailto:a.tranberg@damtp.cam.ac.uk
http://jhep.sissa.it/stdsearch


J
H
E
P
0
1
(
2
0
0
7
)
0
3
0

Contents

1. Introduction 1

2. Model, ansatz and mode expansion 3

3. Finding the quasi-breather profile 4

3.1 Shooting 5

3.2 Radiation energy 6

3.3 Quasi-breather results 7

4. Real-time evolution 10

4.1 Quasi-breathers and oscillons 11

4.2 More than 3 dimensions 13

4.3 Less than 3 dimensions 13

4.4 Approaching ωcrit from above 14

5. Oscillon life-times and dimensionality 15

6. Conclusion 16

1. Introduction

Topological defects such as monopoles, vortex strings and domains walls owe their stability

to non-trivial boundary conditions or, equivalently, a conserved (topological) charge [1].

There are other mechanisms which can lead to the formation of lumps in field theory,

such as the conservation of a Nöther charge allowing for Q-balls [2] or it may simply be

energetically favourable as in the case of semi-local strings [3].

However, it turns out that even in the absence of such topological constraints or sym-

metry arguments, solutions to non-linear field equations can have localised lumps of energy.

A typical example of this is the solitonic breather solution in the sine-Gordon model.

A more curious set of lumps in field theories are those which exist for a long, but finite,

time without any of the reasons listed above. These go by the name of oscillons [4] and exist

as a localized oscillating state, with the oscillations remaining coherent for much longer

than naive dimensional analysis would suggest [5, 6]. Simulations of φ4 scalar theories in

two dimensions [7] suggest that they decay only after millions of natural time units whereas

in three dimensions they last for thousands of natural time units [8]. The mechanism for

their demise follows from their oscillating nature, with the emitted radiation eventually

causing oscillons to decay. There is precedence for oscillating solutions to continue for
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ever, although it has only been observed in 1+1 dimensions in breathers of the sine-Gordon

model. However, this model is rather special in that it is integrable, containing an infinite

number of conserved currents. An understanding of the evolution of oscillons was gained

in [9] using Fourier analysis to construct strictly periodic solutions, later termed “quasi-

breathers” in [10]. Such exactly periodic solutions exist because they include a component

of inwardly directed radiation, unlike the oscillon solutions which only radiate outwards,

albeit in small amounts. So while quasi-breathers are not expected to be physical their

construction shows that the amount of radiation involved is small enough (in some cases)

to make them a valid approximation.

In [11, 12] it has been suggested that oscillons cease to exist, in any meaningful sense,

for dimensions greater than 5 or 6 depending on the details of the potential. This result

was found by assuming a Gaussian profile for oscillons and substituting this into the action

in order to generate an effective action. Given the extreme sensitivity of oscillon lifetimes

on the initial profile [8, 13] this approach can only yield an indication of what may happen

and serves as impetus for our study. We use quasi-breathers in our analysis to show how

oscillons behave in various dimensions, including their non-existence in higher dimensions.

It is worthwhile mentioning at this point that oscillons have been observed in the

laboratory [14], forming in granular materials placed on a vibrating plate. While these

oscillons are not described by a relativistic field theory they are similar enough to bear the

same name.

Apart from the challenge of understanding oscillons in themselves, interest derives

from the possible impact of these objects if they are generated in large numbers in phase

transitions. In particular, if such “coherently oscillating” lumps persist for hundreds or

thousands of oscillations, they may play a role during post-inflationary preheating and

baryogenesis, and delay the subsequent equilibration and thermalisation.

Oscillons have been extensively studied in recent years, mostly in scalar models, but an

oscillon has also been reported in the SU(2)-Higgs model [15]. The very recent work of [10]

is a detailed numerical study of oscillons in 3+1 dimensions. Improving on the analysis

of [13], the authors propose that generic oscillons are composed of a core quasi-breather of

a particular oscillation frequency ω and a number of additional modes, depending on the

initial state. As time goes on the oscillon will radiate the excess energy while changing

frequency [9], its core scanning through a series of quasi-breathers, eventually approaching

a critical ω quasi-breather, after which the oscillon decays. The critical ω corresponds to

the lowest energy quasi-breather.

The study in two dimensions of [7] showed that a non-spherical perturbation was not

deleterious to the oscillon’s evolution and so for our study we restrict our attention to

spherical symmetry in D space dimensions. The spatial dimension then simply appears

as a parameter in an effective 1+1 spacetime field theory, this allows us to consider non-

integer dimensions as a way of observing more clearly how oscillon behaviour depends on

D. Using this ansatz, we will perform a mode-decomposition of the quasi-breather in a

way similar to [9, 10, 13], and numerically find solutions for each ω, for each choice of

spatial dimensions D. Restricting to 3+1 dimensions, it was observed in [9] that there is

a particular value of quasi-breather frequency, ωcrit, which has minimum energy. Oscillons
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with frequencies different from ωcrit evolve toward this solution as they radiate energy,

decaying once they reach this frequency. We shall see that this behaviour persists in other

dimensions, although the time it takes for oscillons to reach ωcrit depends sensitively on

D. We shall confirm the fact that for D = 3 lifetimes are of the order of 104 [10], whereas

for D = 2 oscillons can oscillate for many times 106. Obviously, in the limit of D = 0 an

oscillon is simply a particle oscillating in a well and so is strictly periodic.

These quasi-breather profiles can then be used as initial conditions for real-time sim-

ulations in order to find the lifetime of these objects. Also, we will use (non fine-tuned)

Gaussian initial conditions as in [10, 13] and study how these oscillons approach the quasi-

breather evolution as radiation is emitted. We will see that the oscillon closely follows the

quasi-breather, and that the two decay in a similar way.

In section 2 we will set up the model, the quasi-breather ansatz and the mode decom-

position we use. In section 3 we will determine the quasi-breather solutions numerically,

for a range of ω and D. The real-time evolution of these quasi-breathers is presented in

section 4, where we also compare to the evolution of a generic Gaussian initial condition.

We will discuss the lifetimes of these objects in section 5 and conclude in section 6.

2. Model, ansatz and mode expansion

We shall study oscillons in scalar φ4 in D + 1 dimensions starting with the action

S = −
∫

dt̂dDx̂

[

1

2
∂̂µφ̂∂̂µφ̂ +

1

2
m2φ̂2 +

1

3
αφ̂3 +

1

4
βφ̂4

]

. (2.1)

From this staring point we restrict the number of free parameters by making the potential

a symmetric double well, achieved by imposing

α = −3m
√

β/2. (2.2)

This gives a potential with extrema at

φ̂ext = 0,
m√
2β

,m

√

2

β
. (2.3)

It is now possible to perform some rescalings of the co-ordinates and the field

φ̂ =
m√
2β

φ, r = mr̂, t = mt̂, (2.4)

and consider only radially symmetric field configurations to find

S = −m4−D

β
AD−1

∫

dt dr rD−1

[

−1

2
(∂tφ)2 +

1

2
(∂rφ)2 +

1

2
φ2 − 1

2
φ3 +

1

8
φ4

]

, (2.5)

where AD−1 = 2πD/2Γ(D/2) is the volume of the D − 1 sphere which has been integrated

out.
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A quasi-breather is a periodic solution to the equations of motion, and as such can be

expanded in modes with frequencies that are integer multiples of some basic frequency ω,

φ(r, t) =
1√
2
φ0(r) +

∞
∑

n=1

φn(r) cos(nωt). (2.6)

The 1√
2

in the first term is purely for convenience later. By integrating the action over a

period, 2π/ω we have

S = −m4−Dπ

ωβ
AD−1

∫

dr rD−1

[( ∞
∑

n=0

1

2
(∂rφn)2

)

− Ueff (φn)

]

, (2.7)

Ueff (φn) = −1

2
φ2

0 −
1

2
(1 − ω2)φ2

1 −
1

2
(1 − 4ω2)φ2

2 − · · · (2.8)

+
1

2
φ3

0 +
3

2
φ0φ

2
1 −

1

8
φ4

0 −
3

4
φ2

0φ
2
1 −

3

16
φ4

1 + · · · , (2.9)

We now have an effective action in terms of dimensionless parameters r, ω for the dimen-

sionless fields φn. This allows us to reinterpret it in terms of a particle rolling in “time” r

through a space spanned by the φ coordinates under the influence of the potential (2.8).

A contour plot of this potential, setting φ2 = φ3 = · · · = 0 and taking 1
2 < ω < 1 is shown

in figure 1, with a maximum at (φ0, φ1) = (1,∼ 1.3), minimum at (1, 0) and a saddle at

(0, 0). We shall use this plot to undertand the basic shape of the quasi breather profile.

3. Finding the quasi-breather pro-

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

φ
0

φ
1

Figure 1: A slice through the effective potential.

Maxima are at (0,0), (1,1.3) and there is a mini-

mum at (1,0).

file

To find the quasi-breather profile for a par-

ticular choice of frequency, ω, we need to

solve for the trajectory of a particle mov-

ing in Ueff . Note however that, because

of the rD−1 in S, there is a frictional force

acting to slow down the particle in analogy

to finding the bounce profile in quantum

tunnelling [16]. Asymptotically, r → ∞,

we require that the particle takes the value

φ = 0, corresponding to the scalar field

living in the vacuum asymptotically. If we

were to ignore those φn with n ≥ 2 the

problem would be to find the location in

figure 1 where a particle can start at “time” r = 0 in order to end at φ = 0 as r → ∞.

This is achieved by taking an initial guess at the starting point and observing whether

the particle undershoots or overshoots φ = 0, then amending the starting point appro-

priately. In the actual problem one cannot neglect φn≥2 but the process for finding the

values φ0(0) and φ1(0) is the same. The starting values of φn≥2 is less critical, as can

be understood from (2.8), and correspond to adjusting the amount of radiation contained
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in the quasi-breather solution. Near φ = 0, i.e. the asymptotic region, we see that the

effective potential is quadratic with φn aquiring a mass-squared of −1
2(1− n2ω2), so those

φn with n > 1/ω have positive mass-square while those with n < 1/ω have negative mass-

square. This means that the φn>1/ω are oscillatory in the asymptotic region, corresponding

to radiation. We shall only concern ourselves with 1
2 < ω < 1 so that φn≥2 correspond

to radiation modes. With (2.6) being an expansion of spatially oscillating standing waves,

this displays the fact that there is ingoing radiation balancing the outgoing.

3.1 Shooting

A general analytical solution of the equation of motion does not exist, and we will instead

proceed to find the quasi-breather profile by numerical means, using a shooting algorithm.

Although one can in principle shoot with multiple degrees of freedom we will truncate the

mode expansion, using the first four terms, φn, n =0, 1, 2, 3 in our calculations of energy

and radiation. Once we have a profile with these components we include the fifth field, φ4,

as a consistency check to make sure that it does indeed form only a small contribution.

In the shooting algorithm we pick initial values for φn, n < 4 at r = 0, requiring

φ′
n(r = 0) = 0 for regularity. As mentioned earlier, the values of the radiation modes,

n =2, 3, simply dictate how much radiation the quasi breather contains. In [10] the

solution is taken which minimizes the amplitude of φ2 asymptotically, here we aim to find

the solution which minimizes the total radiation as discussed below. For any particular

choice of φ2(0) and φ3(0) we then vary φ0(0) and φ1(0) until we find the solution which

approaches φ = 0 asymptotically. This then gives us the quasi breather for frequency ω

and the chosen φ2(0), φ3(0). By finding the quasi breathers for a range of φ2(0), φ3(0) we

are able to select the one which has the minimum amount of radiation.

An example of a set of profile functions is shown in figure 2 (left); one can see that the

amplitudes of the high-n modes decreases, allowing for a valid truncation approximation.

As we vary the values of φ2(r = 0) and φ3(r = 0) in the shooting algorithm we find quasi-
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Figure 2: Left: The profiles of φ0, φ1, φ2, φ3 and φ4 for D = 3 and ω = 0.97. Right: The

dependence of the quasi-breather radiation on φ2(r = 0) and φ3(r = 0).

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
3
0

breathers with differing amounts of radiation, with one choice giving a minimum, figure 2

(right). We take this solution with minimum radiation to be our quasi-breather.

3.2 Radiation energy

As the oscillon is made by balancing incoming and outgoing radiation then in the realistic

situation where there is only outgoing radiation the oscillons will necessarily decay. Here

we calculate the rate of energy loss as estimated by constructing a quasi-breather.

First we introduce the standard energy momentum tensor for a real scalar field,

Tµν = ∂µφ∂νφ − gµν

[

1

2
∂ρφ∂ρφ + V

]

,

(3.1)

then we define the momentum flux

Pµ = T 0µ, (3.2)

and conservation of the energy-momentum tensor tells us that Pµ is divergence free. By

taking P 0 as the energy density we find

Ė = −
∫

dDx
√

g(D)∇iP
i, (3.3)

and for a spherically symmetric field we find

Ė(R) = −A(D−1)R
D−1P r(r = R), (3.4)

where we have defined E(R) to be the energy within a radius R.

Asymptotically the fields are small so we may approximate the field equation by the

Klein-Gordon equation

−φ̈ + φ′′ +
D − 1

r
φ′ = φ, (3.5)

the closed form solution of which can be approximated asymptotically by the form

φ ∼ cos(kr − Ωt + ϕ)/r(D−1)/2, k2 = Ω2 − 1. (3.6)

where we have allowed for a possible phase, ϕ. Our solution is a sum of waves of different

frequencies producing a standing wave between ingoing and outgoing waves,

φ(r → ∞) → 1

r(D−1)/2
(f2 cos(k2r + ϕ2) cos(2ωt) + f3 cos(k3r + ϕ3) cos(3ωt) + · · ·) ,(3.7)

=
1

2r(D−1)/2
( f2 cos(k2r + ϕ2 + 2ωt) + f2 cos(k2r + ϕ2 − 2ωt) (3.8)

+f3 cos(k3r + ϕ3 + 3ωt) + f3 cos(k3r + ϕ3 − 3ωt) + · · ·),
= φin + φout, (3.9)

where k2
n = n2ω2 − 1 and φin contains the terms of the form ∼ cos(knr + ϕn + nωt). Using

P r = φ̇outφ
′
out (3.10)
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we can integrate over one period and find that the average rate of energy loss over a period

is

< Ė > = −
ωA(D−1)

8
(2k2f

2
2 + 3k3f

2
3 + · · ·). (3.11)

For the profiles used in figure 2 we find

Ė = 7.9 × 10−6 + 0.31 × 10−6 + 0.035 × 10−6 + · · · (3.12)

The leading term is from the φ2, with the φ3 and φ4 contributions being sub-dominant.

3.3 Quasi-breather results

We now have everything in place to find a quasi-breather for each given frequency, we

shall only focus on frequencies in the range 0.95 ≤ ω ≤ 0.99. The choice of lower bound

is because, as we shall see, oscillons spend most of their time above this frequency. Our

upper bound is due to numerical inaccuracies in the shooting algorithm giving unreliable

results above this frequency. The first result to discuss is the energy of the quasi-breathers

as ω varies, then we can understand how oscillons evolve.

In figure 3 we present a plot, for various dimensions, of the quasi-breather energy as

a function of ω. In order to get the data for the different dimensions on the same axes we

have rescaled each curve so that they meet at ω = 0.95. The different rescaling parameters,

E(D,ω = 0.95), are given in figure 4 showing that to a good approximation the energy of a

quasi breather depends exponentially on dimension. In order to calculate the energy of the

quasi-breather we note that the asymptotic form of the field (3.6) coupled with the spatial

volume element, ∼ rD−1dr, causes the energy, E(R), to diverge linearly with R. This

divergence is simply due to the radiation, so to define the energy of the quasi-breather we
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Figure 3: The rescaled energy plot.
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Figure 4: E(D, ω = 0.95).
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Figure 5: The location of the energy minimum.

simply subtract this contribution which is simple to perform once the asymptotic solution

has been found.

From figure 3 we see that for each dimension considered the energy shows a minimum

at ωcrit as ω is varied, with ωcrit being dimension dependent. This minimum was first

observed in [9] and later in [10]. We can see how this minimum varies with dimension in

figure 5. Unfortunately our numerical methods break down below D ∼ 2.5, because the φ4

mode becomes relevant, and above D ∼ 4.5, because we could not shoot φ to the vacuum,
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Figure 6: The radiation of a quasi breather.

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 2.5  3  3.5  4  4.5

ra
di

at
io

n/
en

er
gy

dimension

R/E(0.95)
R/E(0.96)

R/E(0.97)
R/E(0.98)

Figure 7: The ratio of radiation to energy as a function of dimension.

so we are unable to give a complete plot of the energy minima. It is possible that the

techniques advocated in [10] would give a more complete picture, it would be particularly

interesting to see how the curve develops below D = 2.5.

As explained in [9] oscillons are expected to evolve by radiating energy, and so move

on to a quasi breather with lower energy and different ω. Once the quasi-breather with

ωcrit is reached there is no quasi-breather with lower energy, so the oscillon radiation causes

the lump to radiate away completely. We shall see in the next section that this is a good

description of the dynamics of oscillons, although we remind the reader that quasi-breathers
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are only expected to be an approximation to oscillon evolution owing to the presence of

ingoing radiation in a quasi-breather but not in an oscillon.

Along with the calculation of energy for the quasi-breathers we are able to calculate

the radiation emitted (and received) as a function of ω for each dimension, this is presented

in figure 6. A measure of how long an oscillon can be expected to last comes from the ratio

of the rate of energy loss (3.11) to energy and is plotted in figure 7. From this graph we

see that as we increase the number of spatial dimensions the amount of radiation relative

to energy inside a quasi-breather increases by many orders of magnitude, so reducing the

lifetime of an oscillon. In fact, we can derive a more complete version of the history of

oscillons using quasi-breathers as we shall see in section 4.1.

4. Real-time evolution

Through a detailed minimisation process, we have now determined the solutions with the

lowest radiation for a range of ω and D. The radiation modes correspond to in- and out-

going radiation, and if they are both included, the quasi-breather should in principle be

stable, possibly up to the order of truncation of the mode expansion.

In physical situations we cannot expect there to be incoming radiation so quasi-

breathers are necessarily an approximation to oscillons. Here we test the state of this

approximation by comparing the real-time evolution of lumps with initial conditions that

are either Gaussian or quasi-breather. The quasi-breather profile would, of course, lead

to an exactly periodic evolution so to make the comparison more sensible we damp the

radiation at some large radius.

Ultimately, we are interested in lumps of energy created through some finite energy

process, such as a phase transition, and so a real-life oscillon is not a quasi-breather.

Following [10], we will distinguish between quasi-breathers and oscillons, and represent the

latter by Gaussian initial conditions.

We will study the time evolution by discretising the equation of motion, in a simple

way. The equation of motion reads, imposing spherical symmetry explicitly,

∂tφr(t) + ε∆(φr(t)) = Πr(t),

∂tΠr(t) + ε∆(Πr(t)) = −ΓΠr(t) + ∂r∂
′

rφr(t) −
1

dr

(

1 − (1 − dr/r)D−1
)

∂
′

rφr(t)

−
(

1 − 3

2
φr(t) +

1

2
φ2

r(t)

)

φr(t), (4.1)

with

∂t(. . .)r =
(. . .)(r, t + dt) − (. . .)(r, t)

dt
, ∂

′

t(. . .)r =
(. . .)(r, t) − (. . .)(r, t − dt)

dt
, (4.2)

and similarly for spatial derivatives, and

ε∆(. . .) = ε
dr3

dt

(

∂r∂
′

r

)2
(. . .). (4.3)

We apply this simple leap-frog algorithm with a large lattice (20001 sites), small lattice

spacing (dr = 0.01), time-step (dt = 0.005) and an equally spaced grid with boundary
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conditions φ(r = 20001) = 0, ∂rφ(r = 0) = 0. In [10] it was found that at the level of

fine-tuning applied there, the maximum lifetime and the corresponding initial condition

depend somewhat on the discretisation. However at the level of precision employed here,

this will not be important; we are not attempting to fine-tune to the maximum lifetime.

In order to get rid of the emitted radiation, we mimic an infinitely distant spatial

boundary by adding a damping term only beyond a certain radius Rb.

Γ = 0.1, r > Rb; Γ = 0, r < Rb. (4.4)

The oscillon core roughly stretches to r = 30 and we concluded that Rb = 60 and Γ =

0.1 were reasonable choices. In order to get rid of spurious radiation production on the

lattice scale, we also included a Kreiss-Oliger ∂4
r damping term in the equations of motion,

controlled by a multiplicative parameter ε [13, 17].

The initial condition for the oscillon is a Gaussian,

φ(0)r = A exp

(

− r2

2σ2

)

, (4.5)

which is a two-parameter family of profiles, determined by the amplitude A and the width

σ. We will fix A = 2, i.e. the center of the oscillon starts out in the potential minimum at

φ = 2, while the asymptotic region is in the minimum at φ = 0. We will also fix σ = 3.3,

and consider it a generic initial condition. Not all values of σ give long-lived oscillons, but

3.3 is by no means fine-tuned.

We will compare the evolution of the Gaussian oscillon to the trajectory starting from

a quasi-breather.

4.1 Quasi-breathers and oscillons

During the real-time evolution the oscillon is not stricly periodic, nevertheless we can define

0 2000 4000 6000 8000 10000
t

0.85

0.9

0.95

1

1.05

ω

Figure 8: The effective oscillation frequency for a D = 3 oscillon with Gaussian initial con-

ditions (black, large oscillations), quasi-breather ω = 0.95 initial conditions (red/grey) and the

estimate (4.7) (blue dashed). The orange dotted line represents ωcrit.
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Figure 9: The envelope of the center (r = 0) oscillation (left) and the energy within a shell of

r = Rb = 60 (right). Black lines is the oscillon with Gaussian initial conditions, red/grey using the

ω = 0.95 quasi-breather as an initial condition.

an effective frequency of the oscillation by studying the core of the oscillon and defining

ωeff(t) =
2π

δtcrossing
, (4.6)

where δtcrossing is simply the time between one crossing of φ(r = 0) through zero and

the second crossing after that. This will enable us to measure how the frequency of an

oscillon changes in time, as well as finding the frequency at which the oscillon finally decays.

Both of these quantities can also be calculated within the quasi-breather picture. The time

dependence of ω is found because given the energy E(ω) (figure 3) we can calculate dE/dω,

so along with (3.11) we find t(ω) to be

t − ti =

∫ t

ti

dt =

∫ ω

ωi

dE/dω

dE/dt
dω. (4.7)

Figure 8 presents a comparison in three spatial dimensions of ω(t) for our three cases: the

semi-analytic prediction of 4.7 (blue, dashed); the numerical evolution starting with (non

fine tuned) Gaussian initial conditions (black); and the numerical evolution starting with

the ωi = 0.95 quasi-breather profile (red/grey).

The frequency ωeff for the quasi-breather initial conditions slowly scans through ω

until it reaches ωcrit ' 0.967 where it decays; this happens around t = 6150. Eq. (4.7)

predicts a longer lifetime by a factor of ∼ 3 giving t ∼ 17000, this over-estimation turns

out to be typical and presumably indicates that the quasi-breather picture underestimates

the amount of radiation. After the decay, the characteristic frequency becomes 1, the

radiation frequency.

The oscillon from Gaussian initial conditions starts out far away from the quasi-

breather (the center is initially at φ = 2), but proceeds to shed much of its energy and

approach the quasi-breather behaviour. The frequency has a large modulation, but as

the critical frequency is reached the oscillon decays in a way remarkably similar to the

quasi-breather.

This approach of the case with Gaussian initial conditions to that of the quasi-breather

evolution can also be seen by measuring the time development of the core in the lumps,
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figure 9 (left) shows the envelope of the time evolution for the core of the quasi-breather

(red/grey) and the Gaussian oscillon (black). The modulation of the oscillon frequency is

manifest, but once the decay happens, the two evolve very similarly.

Finally, we plot in figure 9 (right) the energy within a sphere of radius Rb, for the

Gaussian oscillon (black) and the quasi-breather (red/grey). As expected, the oscillon

sheds its energy out of the ball into radiation (which is then damped away outside the

ball). The energy approaches the quasi-breather value, and reaches it just in time for the

decay. Note that the decay is delayed by about 600 in time, compared to the crossing of

the critical frequency.

Recalling that the initial conditions for the Gaussian were not fine-tuned, this is strong

evidence that the quasi-breather behaves as an attractor and is a useful way of understand-

ing oscillon dynamics.

4.2 More than 3 dimensions

As argued in [11, 12] and indicated in figure 7 we should expect that oscillons have rather

shorter lives in higher dimensions. The impact of this on the quasi-breather picture is that

we should expect it to be less accurate, after all, the quasi-breathers are strictly periodic

and have infinite lifetimes. Repeating the analysis of the previous section, but now in

four spatial dimensions, we find the results presented in figure 10. Again we note that the

lifetime as predicted by the quasi-breather arguments is longer than the measured lifetime,

by a factor of ∼ 2 (figure 10 (left)). However, by observing the evolution of the core

(figure 10 (right)) we see that the oscillon phase ends at around t ∼ 400 which is where ωeff

hits ωcrit ∼ 0.971, thus strengthening the argument that oscillons decay once they reach

the critical frequency.

4.3 Less than 3 dimensions

Because of concerns about the validity of the mode truncation, we did not trust finding

quasi-breathers in D = 1, 2; the techniques of [10] may well be more reliable in this regime.

Instead we generalised to non-integer D, D = 2.5, 2.75 which allows us to see more clearly
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Figure 10: Effective frequency (left) and center envelope (right), for D = 4. Color coding as in

figure 8.
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Figure 11: Effective frequency for D = 2.75 (left) and D = 2.5 (right). Quasi-breather initial con-

ditions (red/grey), Gaussian initial conditions (black), estimate (blue dashed) and critical frequency

(orange dotted).

any dependence on spatial dimension. We are able to do this becuase we have assumed

spherical symmetry, meaning that the dimension D appears only as a parameter in our

evolution equations.

In figure 11 we see the evolution of ω for oscillons with quasi-breather initial condi-

tions, Gaussian initial conditions and the semi-analytic estimate. As expected we see that

oscillons last longer in these smaller spatial dimensions, with the semi-analytic reasoning

overestimating the lifetime by a factor of a few.

Figure 11 (right) shows ωeff(t) for D = 2.5. Note that the timescale of interest is now

106 and we did not evolve the simulation up to the decay time in this case; ωcrit ' 0.98 is

far from reached. The Gaussian oscillon (black) closely follows the quasi-breather oscillon

from times ' 20000. The estimate of the evolution (blue dashed) is somewhat off in the

same way as the other cases, although the timescale and general trend is well reproduced.

The prediction is that the oscillons could live as long as 8 × 106 in natural time units.

4.4 Approaching ωcrit from above

So far we have considered only those oscillons whose frequency is less than the critical

frequency, and we have seen that as they evolve they follow along one of the curves in

figure 3 from some ω < ωcrit until they reach ω = ωcrit at which point they decay. The

evolution of the oscillon as it approaches ωcrit is observed to be rather gentle, slowing

down because the radiation of a quasi-breather decreases as we approach ωcrit from below.

Figure 3 reveals another possibility for oscillons, namely those starting from ω > ωcrit, in

this case the quasi-breather picture would say that ω approaches ωcrit from above with

the oscillon following down one of the curves in figure 3. Using Gaussian initial conditions

we were not able to find an oscillon with frequency larger than the critical value, however

we are able to start with a quasi-breather profile satisfying ω > ωcrit. The results are

somewhat disappointing for the quasi-breather picture, as the subsequent evolution did

not show any oscillon phase. Instead, with the exception of D = 3, the field dissipated

rapidly straight into radiation, ω = 1, as shown in figure 12.
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Figure 12: The effective frequency for various D when starting from an ω = 0.99 quasi-breather.

The orange dotted line is ωcrit.

5. Oscillon life-times and dimensionality
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Figure 13: Left: The evolution of ω as predicted by the quasi-breather model using 4.7. Right:

Lifetimes for an oscillon starting from a Gaussian with σ = 3.3 for 2.5 ≤ D ≤ 7.

In this section we shall collect together the information we have found about oscillons

and quasi-breathers, and show how the quasi-breather picture predicts oscillon evolution

should depend on dimension.

We have already seen some specific examples of how the quasi-breather model predicts

the evolution of ω using (4.7), in figure 13 (left) we collect together the predictions for a

range of dimensions 21
2 ≤ D ≥ 5. As noted previously these tend to be off by a factor

of a few, overestimating the lifetime, but we can clearly see that the oscillons in lower

dimensions take much longer to reach the critical frequency. In higher dimensions we find
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that the predicted lifetime is simply not long enough for the system to enter into an oscillon

phase.

We may now compare the lifetime for some specific initial condition to that of the

quasi-breather oscillon model and see how they compare in different dimensions

As was shown in [10, 13], in D=3 one can tune σ to produce oscillons with a large

lifetime, but the level of fine-tuning necessary is extreme. It is then surprising to find that

in D < 3, oscillons living for t ' 106 are rather more generic and require little tuning of

initial conditions. The converse is true in higher dimensions, with the amount of precision

required to find a long-lived oscillon increasing with D. This is the main reason that the

results of [11, 12], based on substituting an oscillon profile into the action, needed to be

confirmed with the more detailed analysis we have presented. Rather than trying to find

the fine-tuned initial conditions which maximize the lifetime in each dimension, we shall

take the same Gaussian initial conditions (σ = 3.3, A = 2) in the various dimensions and

compare the lifetime of the subsequent oscillon with that of the quasi-breather model. The

results are plotted in figure 13 (right) and show that the semi-analytic predictions are well

matched by the numerical evolution.

In order to guide the eye we have overlaid a curve of the form

tlifetime =
c

(Dcrit − D)−a
, (5.1)

with c = 1000, a = −1.5 and Dcrit = 2.65, suggesting that the lifetime goes to infinity

for some D > 0, and possibly for D > 2. While this is a possibility, the quasi-breather

profile could conspire to have zero amplitude for the radiation modes, we believe that the

extrapolation of the quasi-breather results to D = 2 require a finite lifetime. In particular,

figure 7 does not suggest that the radiation goes to zero at D = 2. Note also that there is

a kink in the curve of figure 13 (right) at D ' 5, after which the lifetime suddenly drops

(there are now only a handfull of periods), where a similar fit gives c = 45, a = −0.7 and

Dcrit = 5.02. Although the precise fitting parameters are not essential, the change in power

suggests a different regime (no oscillons) has set in.

6. Conclusion

The interpretation of oscillons in terms of quasi-breathers gives a simple and consistent

picture of why such long-lived objects should exist and may even be generated in a generic

phase transition.

In our setup, the quasi-breathers are the periodic solutions to the equations of motion

with minimal outgoing radiation. The presence of this radiation renders the quasi-breather

unstable, although since the radiation is minimal, presumably it is the longest lived. Even

without excessive fine-tuning, localised lumps (oscillons) can approach and follow the evo-

lution of quasi-breathers, which hence must be considered (at least) weak attractors in the

space of classical solutions.

A quasi-breather exists for each choice of frequency. Given an initial choice of ω,

the configuration evolves through a sequence of quasi-breathers, approaching a critical
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frequency, corresponding to the lowest energy quasi-breather. The time it takes to do

so is well reproduced by considering the emitted radiation. As the critical frequency is

reached, the energy can no longer be lowered, and the quasi-breather decays completely

into radiation.

We performed this analysis for a range of D, the number of spatial dimensions, in

order to establish the stability/existence of oscillons in higher dimensions. Using the quasi-

breather approach we have provided an understanding for the prescence of very long-lived

solutions in low dimensions and short-lived solutions in higher dimensions. Although our

method could not cope with D ≤ 2, it is tempting to conjecture from (5.1) that the lifetime

will diverge for some D > 0, although the extrapolation of figure 7 does not seem to support

this. Perhaps including more radiation modes and more hard work can settle this. While

we have studied the dependence on D we have not studied the dependence on V (φ). One

especially interesting case would be the sine-Gordon potential where we know there exist

exactly periodic solutions in D = 1 [18] as well as D = 0, which is just a particle in a well.

For D > 3, the lifetimes become smaller and smaller, and oscillons rush to reach the

quasi-breather before decaying. For D > 5 we were unable to find quasi-breathers with

our shooting method, and it indeed seems like a wholly new, oscillon-free, regime sets in.

This is where the time a configuration takes to reach a quasi-breather is longer than the

lifetime of the quasi-breather itself, so no oscillon can get established.

In a 3+1-dimensional expanding Universe, assuming that the expansion does not sig-

nificantly influence the field evolution, it is therefore natural to expect oscillons to be

generated in phase transitions or during (p)reheating after inflation, with lifetimes of order

104 in mass units, but probably not much longer. Scalar fields thermalise on much longer

timescales than this [19, 20], but when including gauge degrees of freedom equilibraton is

much faster (see for instance [21, 22]). Oscillons may potentially delay this process if they

are produced in large numbers, and if the effects of the gauge field do not substantially

change the picture.

In order to make further statements about this point, we need to look for quasi-

breathers in more realistic settings such as the Standard Model and its extensions. In the

restriction to the SU(2)-Higgs model [15], an approach similar to the one employed here

should work, in spite of the complexity introduced by the additional degrees of freedom.

Work is under way to address this.
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